# PHYS 705: Classical Mechanics

Kepler Problem: Derivations

Start with our derived ODE for  $r = r(\theta)$ :

$$\frac{d^2u}{d\theta^2} + u = -\frac{m}{l^2} \frac{d}{du} \left[ V \left( \frac{1}{u} \right) \right] \qquad \text{(recall } u = 1/r\text{)}$$

Now, plug in the gravitational potential: V(r) = -k/r = -ku

$$\frac{d^2u}{d\theta^2} + u = -\frac{m}{l^2}(-k) = \frac{mk}{l^2}$$

This is just an inhomogeneous harmonic oscillator equation...

The solution to this equation has the following general form:

$$u(\theta) = A\cos(\theta - \theta') + B$$
 (where  $\theta$ ' is initial choice for  $\theta$ )

(A and B are const to be determined)

To continue, it is convenient to write this as:

$$u(\theta) = \frac{1}{\alpha} \left( 1 + \varepsilon \cos(\theta - \theta') \right) \qquad (note \ A = \varepsilon/\alpha, B = 1/\alpha)$$

$$\frac{du}{d\theta} = -\frac{\varepsilon}{\alpha} \sin(\theta - \theta') \quad and \quad \frac{d^2u}{d\theta^2} = -\frac{\varepsilon}{\alpha} \cos(\theta - \theta')$$

Substituting this trial solution back into our ODE:  $\frac{d^2u}{d\theta^2} + u = \frac{mk}{l^2}$ 

$$\rightarrow \frac{\varepsilon}{\alpha} \cos(\theta - \theta') + \left[ \frac{1}{\alpha} + \frac{\varepsilon}{\alpha} \cos(\theta - \theta') \right] = \frac{mk}{l^2}$$

This gives:

$$\alpha = \frac{l^2}{mk}$$

To get  $\varepsilon$ , consider the orbit at the apside during the closet approach ( $r_{\min}$ ):

- At  $r_{\min}$ , u has its maximum value since u = 1/r.
- From our orbit equation:

$$u(\theta) = \frac{1}{\alpha} \left( 1 + \varepsilon \cos \left( \theta - \theta' \right) \right)$$

 $u_{\text{max}}$  occurs when  $\theta = \theta'$ , and  $u_{\text{max}} = \frac{1+\varepsilon}{\alpha}$  or  $r_{\text{min}} = \frac{\alpha}{1+\varepsilon} = \frac{l^2}{mk(1+\varepsilon)}$ 

$$r_{\min} = \frac{\alpha}{1+\varepsilon} = \frac{l^2}{mk(1+\varepsilon)}$$

- At  $r_{\min}$  , the angular momentum  $l=r_{\min}\left(mv\right)_{\kappa}$ 

Plug in  $r_{\min}$ , we have

$$l = \frac{l^2}{mk(1+\varepsilon)} (mv) = \frac{l^2}{k(1+\varepsilon)} v$$

Recall at apside:

Solving for 
$$v$$
 we have:  $v(at r_{min}) = \frac{k(1+\varepsilon)}{l}$ 

- Now, we calculate the total energy E at  $r_{\min}$  using these solved values:

$$T = \frac{1}{2}mv^2 = \frac{mk^2(1+\varepsilon)^2}{2l^2} \qquad V = -\frac{k}{r_{\min}} = -k\left(\frac{mk(1+\varepsilon)}{l^2}\right) = -\frac{mk^2(1+\varepsilon)}{l^2}$$

$$E = T + V = \frac{mk^2 (1+\varepsilon)^2}{2l^2} - \frac{2mk^2 (1+\varepsilon)}{2l^2}$$

$$E = \frac{mk^2}{2l^2} (1+2\varepsilon + \varepsilon^2 - 2 - 2\varepsilon) = \frac{mk^2}{2l^2} (\varepsilon^2 - 1)$$

$$\varepsilon = \sqrt{1 + \frac{2El^2}{mk^2}}$$

- Solving for  $\varepsilon$  gives,  $\varepsilon = \sqrt{1 + \frac{2El^2}{mk^2}} \qquad \text{(as we will see, } \varepsilon \text{ is the eccentricity of the orbit)}$ 

- Finally, putting our results together, we have the following orbit equation in terms of the two constants of motion *E* and *l*:

$$r(\theta) = \frac{\alpha}{1 + \varepsilon \cos(\theta - \theta')}$$

with 
$$\alpha = \frac{l^2}{mk}$$

$$\varepsilon = \sqrt{1 + \frac{2El^2}{mk^2}}$$

- Goldstein started with the formal integral solution for the orbit:

$$\theta = \theta_0 + \int_{r_0}^{r} \frac{ldr}{mr^2 \sqrt{\frac{2}{m} \left(E + \frac{k}{r} - \frac{l^2}{2mr^2}\right)}}$$

Rewriting in terms of u = 1/r then integrate directly (using a table) Getting the same result as before:

$$r(\theta) = \frac{\alpha}{1 + \varepsilon \cos(\theta - \theta')} \qquad \alpha = \frac{l^2}{mk}$$

(with the initial condition:

$$r_0 = r_{\min}$$
 and  $\theta_0 = \theta'$ )

$$\varepsilon = \sqrt{1 + \frac{2El^2}{mk^2}}$$

- Start with the 2<sup>nd</sup> law:  $\dot{\mathbf{p}} = \mathbf{F} = \frac{F(r)\mathbf{r}}{r}$  (central force assumption)
- Cross both sides with the (constant) angular momentum vector L,

LHS: 
$$\dot{\mathbf{p}} \times \mathbf{L} = \frac{d}{dt} (\mathbf{p} \times \mathbf{L})$$
 (since L is a const)

RHS: 
$$\frac{F(r)\mathbf{r}}{r} \times \mathbf{L} = \frac{F(r)}{r} (\mathbf{r} \times \mathbf{r} \times m\mathbf{v})$$

note:  

$$\frac{d}{dt}(\mathbf{r} \cdot \mathbf{r}) = \mathbf{r} \cdot \frac{d\mathbf{r}}{dt} + \frac{d\mathbf{r}}{dt} \cdot \mathbf{r}$$

$$\frac{d}{dt}(r^2) = 2r\dot{r} \qquad 2\mathbf{r} \cdot \mathbf{v}$$

$$\mathbf{r} \cdot \mathbf{v} = r\dot{r}$$

RHS: 
$$\frac{F(r)\mathbf{r}}{r} \times \mathbf{L} = \frac{F(r)}{r} (\mathbf{r} \times \mathbf{r} \times m\mathbf{v})$$

$$= \frac{mF(r)}{r} (\mathbf{r} (\mathbf{r} \cdot \mathbf{v}) - \mathbf{v} (\mathbf{r} \cdot \mathbf{r}))$$

$$= \frac{mF(r)}{r} (\mathbf{r} (\mathbf{r} \cdot \mathbf{v}) - \mathbf{v} (\mathbf{r} \cdot \mathbf{r}))$$

$$= \frac{mF(r)}{r} (r\dot{\mathbf{r}}\mathbf{r} - r^2\mathbf{v})$$

$$= \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

- Continue to simplify,

RHS: 
$$\frac{F(r)\mathbf{r}}{r} \times \mathbf{L} = \frac{mF(r)}{r} \left( r\dot{r}\mathbf{r} - r^2\mathbf{v} \right)$$
 (cancel one  $r$  and put in  $F(r) = -k/r^2$ )
$$= mk \left( \frac{r\mathbf{v} - \dot{r}\mathbf{r}}{r^2} \right) = \frac{d}{dt} \left( \frac{mk\mathbf{r}}{r} \right)$$

- Putting them back together, we have,

$$\frac{d}{dt}(\mathbf{p} \times \mathbf{L}) = \frac{d}{dt}\left(\frac{mk\mathbf{r}}{r}\right) \quad \text{or} \quad \frac{d}{dt}\left(\mathbf{p} \times \mathbf{L} - \frac{mk\mathbf{r}}{r}\right) = \frac{d\mathbf{A}}{dt} = 0$$

- Defining  $\mathbf{A} = \mathbf{p} \times \mathbf{L} - \frac{mk\mathbf{r}}{r}$  as the Laplace-Runge-Lenz vector, we then have the conservation of this additional constant of motion!

#### Laplace-Runge-Lenz Vector

 $\mathbf{A} = \mathbf{p} \times \mathbf{L} - \frac{mk\mathbf{r}}{r}$ : **A** is a fixed vector in space and it is related to the "closed-ness" of the orbits in the Kepler's system.



(**L**, E, & **A** amount to 7 constants of motion but since they are inter-related, there are redundant info.)

- Getting back to the derivation of  $r(\theta)$ ,
- dot **r** to **A**:

$$\mathbf{r} \cdot \mathbf{A} = \mathbf{r} \cdot (\mathbf{p} \times \mathbf{L}) - \frac{mk}{r} (\mathbf{r} \cdot \mathbf{r})$$

$$= \mathbf{L} \cdot (\mathbf{r} \times \mathbf{p}) - mkr \qquad used \quad \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

$$= \mathbf{L} \cdot \mathbf{L} - mkr = l^2 - mkr$$

$$rA\cos\theta = l^2 - mkr$$



Since **A** is a fixed vector in space,  $\theta$  measure the direction of r as it sweeps around the orbit (with **A** as a fixed reference).

- Solving for r, we get,

$$(mk + A\cos\theta)r = l^{2}$$

$$r = \frac{l^{2}}{mk + A\cos\theta} = \frac{l^{2}/mk}{1 + (A/mk)\cos\theta}$$

- So, we have once again the orbit equation as before,

$$r = \frac{\alpha}{1 + \varepsilon \cos \theta} \quad \text{with} \quad \alpha = l^2 / mk \quad and \quad \varepsilon = A / mk$$

- Comparing with our previous value for  $\varepsilon$  , we have the following relation,

$$\varepsilon = \sqrt{1 + \frac{2El^2}{mk^2}} = \frac{A}{mk} \rightarrow 1 + \frac{2El^2}{mk^2} = \frac{A^2}{m^2k^2} \rightarrow m^2k^2 + 2El^2m = A^2$$