
PHYS 705: Classical Mechanics
Kepler Problem: Derivations
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Orbit Equation r = r(q ): Derivation 1

Start with our derived ODE for r = r(q ): 

Now, plug in the gravitational potential: ( )V r k kur   

(recall u = 1/r)
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This is just an inhomogeneous harmonic oscillator equation…

The solution to this equation has the following general form:

 ( ) cos 'u A Bq q q   (where q ’ is initial choice for q)

(A and B are const to be determined)
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Orbit Equation r = r(q ): Derivation 1

To continue, it is convenient to write this as: 

Substituting this trial solution back into our ODE:
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Orbit Equation r = r(q ): Derivation 1

To get      , consider the orbit at the apside during the closet approach (       ):

- At        , u has its maximum value since u = 1/r.



occurs when              , and 
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- From our orbit equation: 
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- At        , the angular momentum minr  minl r mv
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Plug in        , we haveminr
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Orbit Equation r = r(q ): Derivation 1

Solving for v we have:

minr- Now, we calculate the total energy E at        using these solved values: 
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- Solving for      gives,
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(as we will see,       is the 

eccentricity of the orbit)


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Orbit Equation r = r(q ): Derivation 1

- Finally, putting our results together, we have the following orbit equation 

in terms of the two constants of motion E and l:

with
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Orbit Equation r = r(q ): Derivation 2

- Goldstein started with the formal integral solution for the orbit:

Rewriting in terms of u = 1/r then integrate directly (using a table) 
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Getting the same result as before: 
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(with the initial condition: 
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0 min 0 'r r and q q 
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Orbit Equation r = r(q ): Derivation 3

- Start with the 2nd law:                                (central force assumption)
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LHS:

BACCAB rule:

- Cross both sides with the (constant) angular momentum vector L,
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Orbit Equation r = r(q ): Derivation 3

- Continue to simplify,

 d d mk
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(cancel one r and put 

in )

- Putting them back together, we have,

- Defining                                  as the Laplace-Runge-Lenz vector, we then 

have the conservation of this additional constant of motion !
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Laplace-Runge-Lenz Vector

: A is a fixed vector in space and it is related to the 

“closed-ness” of the orbits in the Kepler’s system.
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r
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(L, E, & A amount to 7 constants of motion but since they are inter-related, there are 

redundant info.)
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1,2,3r
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Orbit Equation r = r(q ): Derivation 3

- Getting back to the derivation of r(q ),

- dot  r to A:

Since A is a fixed vector in space, 

q measure the direction of r as it 

sweeps around the orbit (with A

as a fixed reference).
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Orbit Equation r = r(q ): Derivation 3

- Solving for r, we get,

- So, we have once again the orbit equation as before,

  2cosmk A r lq 
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with 2l mk and A mk  

- Comparing with our previous value for     , we have the following relation,
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