PHYS 705: Classical Mechanics

Kepler Problem: Derivations




Orbit Equation r = r(@): Derivation 1

Start with our derived ODE for r = r(8):

d2u+u—_ﬂi V l Nu-=
10 T » (recallu =1/r)

Now, plug in the gravitational potential: V' (r)=—k/r = —ku

This is just an inhomogeneous harmonic oscillator equation...

The solution to this equation has the following general form:

u(9) = Acos (3 s ') + B (where 6’ is initial choice for 6)
(A and B are const to be determined)
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Orbit Equation r = r(@): Derivation 1
To continue, it is convenient to write this as:

u(@):l(1+gcos(¢9—9')) (note A=¢/a,B=1/ax)

a
2
du_ —isin(é?—@') and 2 Z = —ﬁcos(e—é")
do o do o
d’u mk
Substituting this trial solution back into our ODE: 7 +y = 1_2
=) —EC _9')+|:$+W}:n;_zk

This gives:




Orbit Equation r = r(@): Derivation 1

To get ¢ , consider the orbit at the apside during the closet approach (7 _. ):

min

-Atr

min ’

u has its maximum value since u = 1/r.

- From our orbit equation:

u(@):$(1+gcos(0—0'))

1+¢ a /2
u_. occurswhen §=¢0"',and u,, =—— or

max min

o l+¢ mk(1+g)

- Atr, ., the angular momentum /=7 __ (mv)

\/Recall at apside )
Plugin 7 ., we have r=0&rlv

R S O S S N
mk(1+¢) k(1+¢)

rxXv=r._.V )




Orbit Equation r = r(@): Derivation 1

Solving for v we have: v(ar r,, )= k(l;r £)
- Now, we calculate the total energy E atr,_. using these solved values:
k2 1+8 ? k 1+ k2 1+
oL i 0ee) ok fmk(e)) | mk(1re)
2 21 rmin l I
=) E—T+V—mk2(1+g)2 2mk2(1+‘9)
2 R
mk” 2 mk® [
E=" (1322 +&* —22¢ ) = o (5> —1)
VE]? (as we will see, ¢ isthe

- Solving for & gives,

E=,|1+ . .
mik? eccentricity of the orbit)




Orbit Equation r = r(@): Derivation 1

- Finally, putting our results together, we have the following orbit equation

in terms of the two constants of motion E and [:

a
r(@) =
(0) l+&cos(0-0")
12
ith a=—
W mk
2El’
=41+

mk?*



Orbit Equation r = r(@): Derivation 2

- Goldstein started with the formal integral solution for the orbit:

r
r

ldr

2
mrz\/2£E+k— / Zj
% m ro2mr

Rewriting in terms of u = 1/r then integrate directly (using a table)

0=0,+

(.

Getting the same result as before:

a I’
r(0) = o =—
©) 1+&cos(0-0") mk
: el . 2E]?
(with the initial condition: c= .1+ =
m

vn=r. and 6,=0")



Orbit Equation r = r(@): Derivation 3
F(r)r

(central force assumption)

- Start with the 2mdlaw: p=F =
r

- Cross both sides with the (constant) angular momentum vector L,

pxL = %(p xL) (since L is a const)

LHS:
RHS: F(:)rxL:Fir)(rxrme)
note I - mlj,(r) (r(r'v)_v(r'r))\/BACCAB rule:
%(T):r.%l%. = mi(r)(rfr—er) é]:?:-((:?)—c(A-B)
L(rt)=2r 2wy j
= rv=ri )




Orbit Equation r = r(@): Derivation 3

- Continue to simplify,

RHS: F(rr xL = ) (rfr — rZV) -
r v (cancel one r and put
Z—m—zk(fr—rv) /kin F(r)y=—k/r*) ]
r
(rv—frj d (mkr
— mk ==
r dt\ r )

- Putting them back together, we have,
i(pr):i(ﬂ) or i(pr—mjzd—Azo
dt dt\ r

mkr
as the Laplace-Runge-Lenz vector, we then

- Defining A =pxL -

v
have the conservation of this additional constant of motion !



————

Laplace-Runge-Lenz Vector

A =pxL———: Ais a fixed vector in space and it is related to the

r
“closed-ness” of the orbits in the Kepler’s system.

For three diff
positions I3,
A remains
constant !

(L, E, & A amount to 7 constants of motion but since they are inter-related, there are

redundant info.)
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Orbit Equation r = r(@): Derivation 3

- Getting back to the derivation of r(8),

- dot rto A:
r-A:r-(pr)—m—k(r-r)
r
=L-(r><p)—mkr used A-(BxC)=C-(AxB)

=L-L-—mkr=1>—mkr

rdcos@ =1 — mkr

\ /Since A is a fixed vector in space)
@ measure the direction of r as it

- sweeps around the orbit (with A

\as a fixed reference). )
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Orbit Equation r = r(@): Derivation 3

- Solving for r, we get,

(mk + Acos @) r =1

L I’ - Plmk
mk+ Acos® 1+ (A/mk)cos@

- So, we have once again the orbit equation as before,

% . 2
= = :A
r R with a=0/mk and &= A/mk

- Comparing with our previous value for & , we have the following relation,

2 2 2
g:,/1+2El;12 = Ak - 1+2EIZ2 = sz — | M’k +2EPm= A
m m m m




